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In this paper certain physical conditions are considered which permit 
significant simplifications to be m&de in the equations of g&s dynamics 
describing the non-steady flows with small but sharp changes of the para- 
meters of the mediue, The m&them&tic&l approximstions are based on the 
fact that the pressure variations in the stress take place in a small 
region rtdjacent to the shock w&ye front, Such flows are named “short 
waves* + Exact particular solutions of the deriv#d nonlinear differential 
equation& are obtained. These solutions are then used for the approximate 
solution of & problem of nonlinear reflection of & shock wave from R 
perfectlg rough wafi. The boundary conditions at the front of one or 
sever&l sboc-k W8YSS am be s&tisfied with sufficient iLccrrracJF by proper 
choice of the constants contsined in the particular solutions. The bound- 
ary conditions at the wall are satisfied automatioally. 

In studying the propagation of the waves with small relative excess 
preamre p/PQ (where P, is the iaitiaf pressure in the undisturbed medium 
and p is the v&ri&tfon of pressure1 usuaffs the lWiO@S_t;iC8f equstions 8~c 

m8de use of, In thet c&se the propagation vefocit;g of disturbances is 
considered to be constant and equal to the velocity of sound in the un- 
disturbed medium. 

It is observed, however, thst some phenomena in sgite of the small 
ref&tive excess pressures in the waves &re determined entirely by the 
dependence of the velocity of ~ro~e~~~~o~ of disturbances ox tbe atrgnitude 
of excess pressure. Thus the laws of extinction of shock waves at great 
distancea from the pl&ce of explosion are determined basically bY this 
dependenoe [1,21. This dependence introduces considerable chsnges into 
the picture of shock ware reflection from 8 free Surfztce CFSSted by tfic? 

explosion of a charge near the surface f3 f, To these ~h~no~e~a belongs 
also the reflection of the shock w&W from a rough surftice for small 
angles between the shock wave front and the nosmsl to the wall. 

Investigation of these phenomen& cannot be basesrl on the linear acoustic 
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equations. The fact is that in spite of the smallness of the relative 

excess pressure the variation of the pressure in the cases indicated 

takes place in a small region. Therefore, the pressure gradients are large 

and the variations of the velocity of disturbance propagation, due to 

pressure, are significant. Such waves with large pressure gradients near 

the shock front may he called “short waves”. 

1. Short waves. 1. In the case of weak shock waves the process of 
compression can be regarded as adiabatic with great accuracy and the law 

of compression for water may be taken in the form 

P==~“[(P/P”)“--11 (I .I) 

where pO is the initial density of the water, p the actual density, p the 

pressure, 

+15OC P, = 
and PO and n are constants. For temperatures of the order of 

3000 kg/cm' and II J 7. 

Relation (1.1) is also valid for air, if P, stands for initial air 

pressure, p excess pressure and n = 1.4. 

2. The equations of dynamics in a spherical coordinate system with 

synvnetry around the axis 8 = 0 may be written in the form 

where t is the time, r is the distance, u and u are the prqjections of 

the velocity vector q on the direction of the radiusvector and the per- 

pendicular to it, a is the velocity of sound. For the velocity of sound 

we have 

(1.3) 

where a0 is the velocity of sound in an undisturbed medium. The equation 

of continuity using these variables Hiill have the form: 

3. Assume 

U = tl, ill, 

For short shock waves M and V are 

tion of short waves it is convenient 

2‘ LIZ $I? (1 .h) 

small quantities. For the investiga- 

to introduce the following variables: 
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r = a,t(l + A), a = a,jl+ +M,a)) s=Int 

M = &fop, V= 

where MO, V 
V, are smal P 

and 8, are characteristic values of M, V and 8, and MO and 

conpared to unity, but cc, u, a and 6 are of the order of 

unity. In such a manner the wavelength in the radial direction is assused 

to be a small quantity, of the order of MO. 

Using the variables introduced and disregarding quantities small com- 

pared to unity in the coefficients, one may write equations (1.3), (1.4) 

in the form: 

(1.7) 

In the last equation of (1.7) the difference dc(/ds - da/da was re- 

placed by its equivalent expression from the first equation of this 

system. From this equation it follows that the derivatives dp/dr and 

da/dr are of an order not greate; than unity. Besides, 

x&e' (1.8) 

From the second equation of (1.7) it follows then that 

MO2 
v,8, ‘- 1 (1.9) 

if 8, - 1, then from the relation (1.9) it is seen that Vo- Mo2. If 8, 

is a small quantity, then from formulas (1.8) and (1.9) we will obtain 

flO--WKJt V o-M,~712y (1.10) 

In all the cases the first of the equations (1.7), after neglecting 

all quantities of small magnitude, will take the form: 

aa &L _ 
as = -a 

Integrating this equation and taking into consideration that only 
those shock waves will be considered in the future, for which the excess 

pressure and the velocity of the particles will be equal to zero just in 
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frant of the wave front, we will obtain a = P. 

From equations (1.1) and (1.3) follows that a = p/n/‘&, and, consequently 

M = p/nP, (1.11) 

In considering the propagation of weak short waves in water, if we 

limit ourselves to pressures not exceeding 200-300 atm, then there corres- 
pond to these pressures nunbers Y less than 0.01-0.05. For weak short 

waves in air it is necessary to limit the excess pressures to 0.15-0.20 

atm for PO f 1 atm. Then the maxima of the n&rs 111 will be 0.10-o. 15. 

let us ass- now MO2 = V&9 . Because the quantity V+f0/9p is always 
small, the second equation of 1.7) after neglecting quantities of small P 

magnitude will have the form: 

av @ 0 ---_= 
aa aY (1.12) 

‘lhe above relationship expresses the condition that the flow is irro- 
tational. 

If 8 -1, 
0 

then V,,--Jfu* and the last equation of (1.7) will take the 

form: 

(1.13) 

The system of equations (1.11) and (1.13) is identical to the system 
of equations for short waves in the case of central syxamtry 12 1. In 
this manner, when the angle 8 is varies in a finite interval, i.e. when 

the derivatives in the direction normal to the radial directron are small, 

the motion of the wave along any ray is independent of the motion along 

the neighboring rays. The general integral of the system (1.12) and (1.13) 

is easily determined. 

4. Let 8, be a small quantity, i.e. let the wave be .short. not only 
in the direction of the radius but also in the direction perpendicular 

to it. ‘lhen in relation to (1.10) we assmne 8, = no and V. t MO flo. 

If the variations in the parameters of a stream take place in the 
vicinity of the axis 8 = 0, then the third equation of (1.7) will take 
the form: 

(I .14) 

If the region of sharp variations of the flow parameters is situated 
near the finite snRle 6 = 8*, then the last equation is simplified: 

(1.15) 
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In a similar manner the system of equations of short waves may be ob- 
tained in the case of plane flows also, For the plane waves in cylindrical 

coordinate system, we have 

(1.16) 

If the wave length is of an order of magnitude less than MO, and the 
derivatives of ~1 and u with respect to S and Y are large, then the equa- 
tions (1.15) and (1.16) are simplified still more; in the case of "very 
short wavesR we have 

(1.17) 

where 6, is constant. The system of equations (1.17) is analogous to the 
equations which describe sonic gas flows [4 I. 

If the flow is self-similar, i.e. if it does not depend on r, then 
for spherical waves we have 

Correspondingly, for plane waves we obtain 

(1 .lS) 

(1.19) 

The systems of equations (1.18) and (1.19) will be of the hyperbolic 
type for S > ~1 and of the elliptical type in the reverse case. 'lhe equa- 
tion of the @sonic line* will be, correspondingly, 8 = p. 

2. Some particular solutions of self-similar equations. 1. 
Let us construct particular solutions of the systesm of equations (1.18) 
and (1.191 for which u = 0 for Y = 0. Let us transform these equations 

beforehand, assuning p and Y to be independent variables, and S and v to 
be the desired functions. lhe system of equations (1.18) will then take 
the form: 

'Ihe transformed equations (1.19) are analogous to the equations (2.1). 
Let us look for particular solutions of the system (2.1) of the form 

‘8 z= p (p) Y, 8 = - -f p’ (p) 1-2 + F (p) (2.2) 

To determine the functions (b and F we have the system of equations 
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1 CJ _ vy9” :! 21 + (2 - ‘3”p = 0, 
( 
p-t+? F’--F+p=O 

1 

For ,plane waves the analomus system has the form: 

I ‘5 - - ., &ffy” _ _L+f ~~ 0, $(p+‘i)F’--41-p -:O 

The general solution of the system (2.3) will be 

'+ = 
A?-_BB?--2 

A+& 

where A, B and C are arbitrary constants. 

831 

(.X3) 

(2.4) 

(2.5) 

The solution of the system of equations (2.4) for the plane waves may 

be represented in the form 

I' = ill; tan (C’p + _,l’) - p, -: F = /j sin2 (A + C’p) + &sin 2 (C'p + A') + p 

(2.6) 

where A’, B and C' are arbitrary constants. Assuning 

C' = ic, A’ = - iac + + 7c, B=--(1$-q/c 

let us present equations (2.6) in the form 

7' -;cothcjn-!!L)--P, F=P-- l+e;;@--U) --;;[I +cosh,&(a-p)I 

(2.7) 

Assuming C' = ic, A’ = - iac and B = (l+ k)/c, we will write equa- 

tions (2.6) in the form 

1 
? Lmz -- C 

tanh c (CL - I*) _ p, $7 =_ t* + I- ;y-“’ 
-$ [cash 2c(a--CL)- 11 

(2.8) 

2. Taking p and v to be independent variables, and the functions 6 

and Y to be unknown variables, from the system of equations (1.1'7) we 
obtain 

(@a,)g+;g=o, -g-$0 (2.9) 

This system has a particular solution, analogous to the one obtained 
for equations (1.19) above: 

';--,,--C2[~y2+(i;O-U)((I--)2+ -g-u--)"I, Y=-?(a--)v (2.10) 

Another particular solution, which does not have a singularity on the 

line p = a,, is given Ly the formula [ 4 I 
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p-+&-6,) -&2, v= --y&-(6--6,) Y_t &YS (2.31) 

where a, c, and F are constants. 

3. Boundary conditions at the front of a shock wave. 1. Let 

the shock wave have an excess pressure p at its front and be propagated 
in a medium with an initial excess pressure p1 and with a particle velo- 

city q1 perpendicular to the front. Then the velocity of propagation of 

the shock wave front N and the velocity of the particles behind the front 

will be 131 

If the normal to the shock wave front and, consequently, also the 

particle velocity vector make a small wle with the direction of the 
radius vector, then the prqjection of the particle velocity on both those 

directions may be considered to be equal to q. Therefore, if q1 = a,,pl/Pgn, 
usinn notations of (1.5) we have 

(3.1) 

2. Lc?t the solution of the short wave equations be given by the func- 

tions 
6 = SQL, Y, I;), Y = Y(& z”, 7) (3.2, 

Within the approximation considered here the projection of the particle 

velocity at the shock wave front and within the stream upon the radius 

vector (or number M) is related by the same equation (1.11) or (3.1). 

l’berefore, as the solution (3.2) is known, it is easy to construct a 
differential equation which determines the location of the shock wave 

fronti which bounds the zone of disturbed motion. 

Let I,!? be the angle between the normal to the shock wave front and the 

direction of the radius vector. We have 

For the prqjections of the velocity vector downstream of the front the 
equalities 

U = qcos~~.q, v = qsin$zuJ, (3.4) 

are valid. ‘lhe velocity of propagation of the front in the direction of 
the radius vector is equal to 
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(Lt the other hand, this velocity may be determined with the help of 

equations (3.2): 

Tlms, the equation of the shock wave front will be 

(3.6) 

(3.7) 

If the solution (3.2) does not depend on r, then from formula (3.7) 

follows 

(3.8) 

If the pressure at the wave front does not depend on time either, then 

the differential equation of the shock front is simplified still more and 

is written in the form: 

in 

A = $(n +l)(M f&1,)+ f+2 

Rhen 8, is a small quantity, we assume in accordance 

G,= 1/x& T;, == _11,1/MG 

Equation (3.9), taking into consideration (3.3), may 
the form 

~=~(~+~,)~~~~~/~Y)* 

When changing to the Cartesian coordinate system, we 

(3.9) 

with (1.10) 

then be written 

have 

(3.10) 

(3.11) 

(X.12) 

‘Ihe differential equation of the shock wave front in the Cartesian 

coordinate system is given by 

ilS/ df' := -- [Y + jC% - (p + PI)] (3.13) 

3. let us now take into consideration the condition of continuity of 

the projection of the velocity vector parallel to the front during transi- 

tion through the shock wave. Let the medium before the wave front be at 

rest. Then the component of the velocity vector parallel to the front is 

equal to zero, and the values M and V, given by equations (3.2) at the 

front of the shock wave, must satisfy the relationship 

,lJ$ -f- I,’ 2 (1 (3. 14) 
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Fig. 1. 

In pursuingr our investigation we shall first try to satisfy condi- 

tion (3.141 and an analogous condition at the front of the shock wave 
propagated through a medium already disturbed,and then check the degree 

to which that condition has been fulfilled. A certain integral relation- 

ship may be satisfied approximately instead of satisfying approximately 

the condition of continuity of the tangential component of the velocity 
vector. 

Let us write in the form of an integral the law of conservation of the 

component of the ants of the fluid in the direction perpendicular to 
the wall, for the region including the front of a shock wave. 

let us consider, for example, the flow that occurs in the case of the 

so-called irremlar reflection of a shock wave from a rough wall (Fig. 1). 

‘lhe curve OA represents a Mach wave, AK the front of an oncoming wave, 
A B the front of a reflected wave and BD the line of equal pressure p. 
Let us consider the mass of the fluid occurring in the region 0’A”B’BD 
at time t. At this time let the front of the Mach wave occupy the posi- 

tion OA and the front of the reflected wave occupy the position AB. At 
time t + dt these fronts will move to positions WA’ and A’B’. ‘Ihe 
particles, lying on the line BD, will take the position B”L)“ I) 

Let uI denote the velocity of the particles behind the front of an on- 

coming wave, and pi the excess pressure. ‘Ihe component of the velocity 

vector perpendicular to the wall will be ula, where a is the angle bet- 

ween the plane of the oncoming wave and the perpendicular to the wall. 

Upstream of the fronts 0 A and AK , u = 0. Let w denote the component of 
the velocity vector perpendicular to the wall. The variation of the 
momentum of the mass of fluid under consideration in time dt is equal up 

to quantities small compared to M, to the expression 

where x is the angle 8, corresponding to the *triple- point A. Indeed, 
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the difference between the ants in the regions O’A’B’LI’ and OABD 

will be less than w ~a~~ Aa~~~~d~, while the ants in the region 

BB”D”D will be less than u~,,,~~&xa$~tdt. If we denote the an&e between 

the shock wave front and the wall by y, and dl an element of the curve, 
then the force impulse of the pressure may be written in the form 

dt [ (p - pl) cos 7 dl = [\(u-uI) dA-u,np, OA - (u - UJ np,BD] P, nt dt 
En”0 A “$0 

J 

Equating the force impulse to the variation of the momentum, we 

+a (8 - X) + 1 wd9 = \ (u - ul) dA - u,np,OA- (U - ul) np,BD 
DB DO 

Introducing the notations 

se obtain 

have 

(3.15) 

(3.16) 

vlao ty - X0) f \ WdY r= \ (t* - PA d& - pl (XA - X0) - (p- pI) (X, - XDI 
IjB DO (3.17) 

4. Approximate solution of the problem of a regular reflect- 
ion of a plane wave from a rough wall at near critical angles 
of incidence. Let a weak infinitely long plane shock wave, with excess 

pressure pi and with a front that is perpendicular to the wall RE 

(Fig. 21, be incident on the wall RO the normal of which makes a small 

angle a with the shock front. 

Fig. 2. 

The front of the reflected wave OBCE consists, in general, of the 

interval of the line OB along which the excess pressure is constant, 
the small arc BC along which a rapid decrease of pressure takes placeand 

the boundary arc CE which is the front of the wave and alonE which the 

pressure hardly differs from the pressure of the incident wave. 

In the region A BCD there will be a sharp variation of pressure in 
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the radial direction and also in the direction 8. In this region we csn 

take the flow to correspond to the short wave. 

2. let /3 be the angle of inclination of the front of the reflected 

wave to the perpendicular of the wall RO. The pressure in this redon 

(or the number MO) as well as the angle fl are determined from the condi- 

tion of the equality of the velocity of propagation of incident and re- 

flected waves alona the wall: 

pr, N1 
-&G-j?= co.3 a G*i) 

and from the equation of the conservation af momentum perpendicular to 

the wall. Gina (3.17) we obtain 

M,=J!J1(1 -i-a/P) (4.2) 

From equation (4.11, considering the equality (3.11, we have 

a2-lj2=$(n-j-l)MQ 
Hence 

As nl decreases the ax&e o decreases and reaches a minis value for 

it1 = I/3. This value of Q is the critical angle of incidence. 

Tbus, demti~ critical values with asterisks, we have 

tc, = 2 1/ 
‘+ M, = -& I/F &lo, P, = + a. (4.4) 

Consequently, a maximum increase of the excess pressure behind the 
front of the reflected wave is reached for the regular reflection at the 

critical angle, and it is equal to three. 

To every value of a in equations (4.3) correspond tso different values 
of ~~~~~. In reality, as is well known, a flow establishes itself which 
corresponds to the value 

Formula (4.5) is valid, of course, only for small angles a close to 

the critical l 

The point B in Fia. 2 is the point of intersection of the front of the 
reflected wave with the sound wave. Ihe equation of the sound wave front 

and the equation of the reflected wave will be correspondingly 

Az~~M,, Af8P--$-&~=== TMl_t-$a3 (4.6) 



On nonlinear reflection of weak shock (IOVCS 837 

Hence 

(4.7) 

The angle of incidence as, at which a sound wave catches up with the 

front of the incident wave, corresponds to 8, = 0; beginning with this 
value of a the region of constant pressure vanishes, From (4.7) we find 

the corresponding values of CL%. We have 
(4.8) 

1 3+vz n+l I%+ 1 
Fl- = - - 2 c 2.65, as = -2-_M, 

v2 5-- 
=” 2.06 ~23; 

(V 1) 
J/j ‘+ 

3. Let us consider the case a > as. To determine the flow in region 

ABCD we will make use of the particular solution (2.8). At the front 

of the sound wave 

Along the wall 

and aX/& > 0 and 

andk>- 1, 

BA w= uii? + d = 0, consequently a = 1. 

RO for Y= Owe have 

dX - = 1 + e*c(l-p) + k sinh 2c (1 - p) 
d t* 

daX -= 
dp” 

- 2c [e2c+-g) + k cosh2c (1 - p)f 

d2X/h2 < 0. These conditions are fulfilled for c > 0 

Constants c and k are chosen in such a manner that for p + gt the 
front of the reflected wave will become the sonic boundary line 6 = pl, 

so as to satisfy the equation of conservation of manentum (3.17) in the 

best manner. 

The equation of the conservation of dents perpendicular to the wall 

in the region which is bounded by the front of the reflected wave, by the 

line p = const and by the wall RO, in the case under consideration, gives 

~Ia”Y- $ tanh c (1 -IL);= (P-PIKG--&3)+ 

+ (1 - p1) (X0 - Xd + $ (1 - f-4 (I+ EL- 2f-4 - 

- -&- {(I + k) (1 - pl) - (p - pl) [e*c(l-p) + k cash 2c (I- IL)) - 

- k sinh 2c (1 - IL)] 

where Y is the ordinate of the point of the reflected wave front. This 
equation is satisfied by all the points of the reflected shock front up 

to the line p = 0.6 with an error not greater than 5 per cent, if it is 

compared with the quantity plaoY. Near p = /.L~ the error reaches 20 per cent. 



Here p1 = 0.4, aa 3 1,325, c = 2 and k r - 1. 

In Fig, 3 is shown the velocity field computed in this manner, or more 
precisely, the constant p lines, which coincide with the lines of equal 
pressures, and the front of the reflected wsve, are presented. 

When the line p = ~~ is approached the pressure gradients decrease, 
therefore, the flow in this region is not described by the equations of 
the short wavesI 

The velocity field near the fine p = Ifi is subjected to considerable 
influence by the flow in tbe hole region of disturbed motion, olhicb is 
determined by the acoustic wave equations, For p < 0.5 + 0.6 the obtained 
solution m&t likely does not furnish a sufficiently correct picture of 
the flow, 

In the region near the line p = 1 the velocity field is near 8 = p, 
i.e. the pressure along the wall near the point A decreases linearly with 
distance. 

4. &ken tl* < Q < D f the front of the reflected warn does not hake any 
straight lint interva fTb 1 . e ve ocity field behind the front of the reflect- 
ed wave can be determined ~~x~~iy by the tise of the particular 
solution (2.1) of tbe equations f2.2). Ibe calculations show that the 
equation of conservation of momentum is best satisfied when u + m.In 
this case the solution (2.1) may be represented in the form 

where h and c are constants. Let MO be the Mach nunber in the point 0 
(Fig. 2) behind the front of the reflected wave* At this point the velo- 
cities of propagation of the incident and reflected waves must be equal, 
therefore 

2 _ z 2__&_@@2 - 2&z--Ml--cf 
c @10) 

The constant k is chosen by Srtue of the condition that for c + pi 
the front of tbe reflected waye coincides with the sound boundary 8 - 1~~. 

Figure 4 gives a picture of the reflection for the case when the angle 
of incidence is equal to the critical angla, Also p1 = l/3, a0 = 2/G, 

h = 0.65, c rr: 3.2, 

'Ihe error which results when equation (3,171 is satisfied, does not 
exceed 20 per cent even for the values c near py* 

5, Irregular reflection. When the angle a f a1 an irregular reflccti~ 
takes place, the configuration of which is shown in Fig 1. In addition 
to the incident and reflected shock waves there appears a third shock 
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wave, a Mach wave. 

Fig. 3. Fig. 4. 

Incident and reflected waves now do not intersect at the wall, but in 

the l tripleW point A which moves along the line 0 = x; the Mach wave 

connects the point A with the wall. 

Let us write the conditions which determine the equation of the velo- 
city of propagation of the shock waves at the point A along the line 

0 = x and of the propagation of the front of the Mach wave along the wall. 

Using equations (3.1) we obtain 
(5.1) 

where M, is the number M at the origin of the Mach wave, +A is the angle 
between the normal to the Mach wave at the point A and the ray B = x. 

When comparing the velocity of propagation of the Mach wave along the 

wall and the velocity of motion of the point A parallel to the wall, we 
obtain 

ao2=1--r+2(XA--&,) (5.2) 

Hence a’* = 1 - ,v~ for x + 0, therefore 

MO/M, = 1 + a”2 (5.3) 

When the angle of incidence is equal to the 

and, consequently, for this value of the angle 

origin of the Mach wave exceeds five times the 

critical angle, a” = 2, 

the excess pressure at the 
excess pressure in the 

incident wave. If the angle a is near zero, then the equation of the re- 

flected wave will differ little from the equation of the sound periphery: 

(5.4) 

The equation of the front of the incident wave may be presented in 
the form 



840 O.S. Ryzhov and S.A. Khristianovich 

x-dY =~pl+$cP (5.5) 

Hence, for the angle, which determines the position of the triple 

point, we obtain the relation 

%=l/l/,(n+l)itl,-a or X'=l-a" (5.6) 

Thus, if the reflected wave were near the sound wave, the angle x 

would become zero for an angle of incidence equal to half the critical 

angle. Actually, angle x becomes zero, when the angle of incidence is 

equal to the critical angle, and it is of very small magnitude roughly 

in the interval 0.5 a* < a < a . In this range a sharp variation of 

pressure takes place in an e&emely small region near the Mach wave. 

To describe the picture of flow in this region we may, therefore, make 

use of the equationq(2.9). 'Ihe position of the origin of the h%xh wave 

is given by the equation X= 0.5, i.e. the value 6, in equations (2.9) 

should be taken to be equal to 0.5. We will assume 

/b++E(;-&,), Y = ET (5.7) 

where c is a small quantity, and [, is a constant equal to the value 6 

for ~1 = 1. With the accuracy up to the order of magnitude c2 we have 

6 = x. Using the above notation the solution (2.11) assumes the form: 

i-$)=21*-1+$-$2, y =: -([A- $),q_$q3 
(54 

When solving the last of these equations for 9, we have 

rl -= rl. (v, P) (5.9) 

Upon adding the particular solutions (2.10) and (2.11) and,assuming 
,2 = ch, we obtain 

vj=vj*(lL,v)--h(a--t*)Y, 5-~:ro=2~-l++[(+-a)(u-~)z+ +(a-lq] 

(5.10) 

Cixnputing the curvature of the lines p = const for 7 = 0 for the velo- 

city field which is given by the equations (5.10), we obtain 

dec \ --I 
h + 4 (2p - I)-2 

dq2 j&Q = h2 [a - p + 2 /h (2t* - I# 
(5.11) 

Since the equation of conservation of momentum (3.171 is to be satis- 
fied along the Mach wave in the best possible manner, it follows that 

the curvature of the curve /.L = 1 for 9 = 0 should be taken as inifinite. 

Also a = 1 - 2/h. 

From formula (5.11) we then obtain 
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Solution (5.10) will now be of the form: 

Y = 12-(1 --PI*) hlv + r.(tL, v) 
E--Eo=-((l- PY [ I+ $ (P - +,I + f [hv2 + r.2 (p, v)l (5.13) 

AlSO (5.14) 

(~E/dy)"=,=(1--)[4+h(2u.--)l, (@;/+2)"-0 = -411 ++-+)I 

If along the wall the quantity de/dp is to increase when cc decreases 

the inequality h < 4 must be satisfied. The variation of the quantity h 
influences only insignificantly the distribution of the pressure along 

the wall, but it changes noticeably the curvature of the lines p = const 

for values of p near unity. If further the absolute magnitude of v is to 

increase along the lines p = const, as 7 increases the value of h should 
be greater than two. Figure 5 shows the velocity field for h = 2 2/3, 
for which the equation of conservation of rnomentm in the region adjacent 

to the Mach wave is satisfied with maximum accuracy. 'lhe equations which 

determine the position of the Mach wave and the equations of the reflected 

wave in the case under consideration have the following form, respectively: 

Fig. 5. 

When the value of the angle a is very near, but less than, the critical 

value, the velocity field behind the front of the reflected wave will be 
very near the velocity field for the angles of incidence, which are just 
a little greater than the critical angle, with the exception of a very 

small region near the point of intersection of the front of the incident 

wave and the wall. 'lhe size of this region approaches zero for a + a+. 

In this small region which includes the Mach wave the velocity field will 

coincide approximately with the velocity field represented in Fig. 5. In 

the construction of the velocity field behind the reflected wave we will 
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again make use of the solution (2.7). We assume that a = A, where m is 

equal to the value p for which the variation of the pressure near the 

point 0 begins to be sharp. Because the size of the region of the sharp 
pressure variation may be considered to be insignificantly small, we can 

equate the velocities of propagation of the front of the reflected and 

incident waves along the wall and obtain: 

The magnitude k is chosen in such a way that the front of the reflected 

wave for I" + itI will tend toward the sound periphery Ei = p 

+ 

. Along the 
front of the reflected wave the equation of conservation o ants 

f3.17) must be satisfied. Calculations show that in order to satisfy this 

condition for pz = 0.25 the quantity c must be of the order of 5, Figure 

6 shows the construction of the velocity field for c = 5.25, k = 0.05, 
corresponding to the value m = 0.7. In this case the equation of conserva- 

tion of momentum is satisfied with an accuracy of 10 per cent relative to 

the term P~QOY, For ~1~ = 0.3 the error increases when using the same 

values of c and k. For p1 = 0.2, the number m may be taken to be equal to 

0.65. 'Ihe velocity field, given in Fig. 6, by approximation may be con- 

sidered to correspond to the velocity field behind the front of the re- 

flected wave in the interval 0.2 < p < 0.3 which corresponds to the inter- 
val of angle (I variation from ct* = 2 j! 1/2(n + iI#w, to a = MJf1727;r;: 

l>J$. 

1 I I 
x,-r 

45 j---d 
fig. 6. Fig. 7. 

?he approximate solution given above does nut pennitus to determine the 

dimensions of the region of the strong pressure variation, i.e. the value 

6 nor the exact boundary which separates the region of the very sharp 

pressure variations near the Mach wave. For this, it is necessary to de- 

rive the solution of the system of equations (1.19), which will include 

the special feature that describes the pressure field near the Mach wave. 
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dependence x = x (a) is determined on the basis of optical measure- 

then the magnitude t is determined from the equations 

Figure 7 shows the curves 1, 2, 

the an les of incidence a = 1.73 J 

and 3 of the pressure distribution for 

2* 

the oritical angle a* = 

l/261 + l)M, and for the angle a = 2.095 1/2(n + 1) M,. 'lhe plotted 

lines show that ihe regions of increased pressure near the Critical angle 

are of very small extent and therefore, for their experimental observation 

in experiments with explosions of small charges, instruments of very high 

resolving power are necessary. 
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