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In this paper certain physical conditions are considered which permit
significant simplifications to be made in the equations of gas dynamics
describing the non-steady flows with small but sharp changes of the para-
meters of the medium, The mathematicsal approximations are based on the
fact that the pressure varistions in the stream take place in & small
region adjancent to the shock wave fromt, Such flows are pamed "short
waves", Exact particular solutions of the derived nonlipear differential
equations are obtained, These solutions are then used for the approximate
solution of & problem of nonlinear reflection of a shock wave from a
perfectly rough wall. The boundary conditions at the front of one or
several shock waves can be satisfied with sufficient accuracy by proper
choice of the constants contained in the particunlar scintions. The bound-
ary conditions at the wall are satisfiled automatically.

In studying the propagation of the waves with small relative excess
pressure p[Ps {where PG is the initial pressure in the undisturbed medium
and p is the variation of pressure) ususlly the scoustical equations are
made use of. In that case the propagation velocity of disturbances is
considered to be constant and equal to the velocity of sound in the un-
disturbed medium.

It is observed, however, that some phenomens im spite of the small
relative excess pressures im the waves are determined entirely by the
dependence of the velocity of propagation of disturbances on the magnitude
of excess pressure, Thus the laws of extinction of shock waves at great
distances from the place of explosion are determined basically by this
dependence [ 1,2]. This dependence introduces considerable changes into
the picture of shock wave reflection from a free surface created by the
explosion of a charge near the surface {3 1. To these phenomena belonegs
also the reflection of the shock wave from a rough surface for small
angles hetween the shock wave front and the normal to the wall,

Investigation of these phenomena cannot be based on the linear acoustic
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equations. The fact is that in spite of the smallness of the relative
excess pressure the variation of the pressure in the cases indicated

takes place in a small region. Therefore, the pressure gradients are large
and the variations of the velocity of disturbance propagation, due to
pressure, are significant. Such waves with large pressure gradients near
the shock front may be called *"short waves".

1. Short waves. 1. In the case of weak shock waves the process of
compression can be regarded as adiabatic with great accuracy and the law
of compression for water may be taken in the form

p=Pollp/p)" —1] (1.1)

where [ is the initial density of the water, p the actual density, p the
pressure, and P, and n are conmstants. For temperatures of the order of

+15°C P, = 3000 keg/cm? and n = 7.

Relation (1.1) is also valid for air, if P, stands for initial air
pressure, p excess pressure and n = 1.4,

2. The equations of dynamics in a spherical coordinate system with
symmetry around the axis 6 = 0 may be written in the form

du ou v du o, 2 7]

1
o Tt Ty =0

or v v dv uw

2 «  da
w Tttt T =0

r n

where t is the time, r is the distance, u and v are the projections of
the velocity vector g on the direction of the radiusvector and the per-
pendicular to it, a is the velecity of sound. For the velocity of sound
we have

a = ao(p/po)’ ", o = (":,0)”: (1.3)

where a, is the velocity of sound in an undisturbed medium. The equation
of continuity using these variables will have the form:

da da v Oa n—1 a/ du or 5 N o) _ 4
»'a-t“ + u —a; + ’r*dﬁ“) + T _7'-\’ ’H; —{— ;’H) + _n + t cot \)/ =0 {Il)

3. Assume
u=ayM, r=a,V (1.0

For short shock waves M and V are small quantities. For the investiga-
tion of short waves it is convenient to introduce the following variables:
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), 7= 1Int

M=Mg, V=vy/ EL, s-u) 2y, a-rtlug

r=uagt (1 4 A), a=ao\,

(1.6)

where M V., and 0 are characteristic values of M, V and 6, and M, and
V are smali conpared to unity, but g, v, a and 8§ are of the order of
unlty In such a manner the wavelength in the radial direction is assumed
to be a small quantity, of the order of M,.

Using the variables introduced and disregarding quantities small com-
pared to unity in the coefficients, one may write equations (1.3), (1.4)
in the form-

oa 2L (g, 0y My 06 ntt N
L e (VR O S S EO T
M o 1 o VoM, 8
ooy ¥ w+%ﬂmé+h“i+mwho (1.7)
ay. 2 n+1 n+1 v .
o +a‘+"+1("’+ ) )( +as)+M3 T
KQ. _gif. _ai v2 V"r"'ivo‘ Vn+1
+ 2+ eoy(ay+ay> vi 4 v co t( OOY)

In the last equation of (1.7) the difference d /38 — da /908 was re-
placed by its equivalent expression from the first equation of this
system. From this equation it follows that the derivatives dpu /dr and
da/dr are of an order not greater than unity. Besides,

ﬁ%£1 (1.8)
[\
From the second equation of (1.7) it follows then that

M2

V.0, ~1 (1.9)

if 6;~1, then from the relation (1.9) it is seen that V,~ Moz. If 6,
is a small quantity, then from formulas (1.8) and (1.9) we will obt.am

b~V M, Vo~ MoV’ M, (1.10)

In all the cases the first of the equations (1.7), after neglecting
all quantities of small magnitude, will take the form:

Ox __ op
a8 3%
Integrating this equation and taking into consideration that only
those shock waves will be considered in the future, for which the excess

pressure and the velocity of the particles will be equal to zero just in
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front of the wave front, we will obtain a = pu.

From equations (1.1) and (1.3) follows that a = p/nP(N, and, consequently
M = p/nP, (1.11)

In considering the propagation of weak short waves in water, if we
limit ourselves to pressures not exceeding 200-300 atm, then there corres-
pond to these pressures numbers M less than 0.01-0.05. For weak short
waves in air it is necessary to limit the excess pressures to 0.15-0.20

atm for P, = 1 atm. Then the maxima of the numbers ¥ will be 0.10-0.15,

Let us assume now Moz = Vy0,. Because the quantity Voﬂo/o9 is always
small, the second equation of 21.7) after neglecting quantities of small
magnitude will have the form:
av o
—af——-?};—O (1.12)
The above relationship expresses the condition that the flow is irro-
tational.

If 6,~1, then Vo"-—ll()2 and the last equation of (1.7) will take the
form:

Et = fu=0 (1.13)

The system of equations (1.11) and (1.13) is identical to the system
of equations for short waves in the case of central symmetry [2]. In
this manner, when the angle 0 is varies in a finite interval, i.e. when
the derivatives in the direction normal to the radial direct.on are small,
the motion of the wave along any ray is independent of the motion along
the neighboring rays. The general integral of the system (1.12) and (1.13)
is easily determined.

4. Let 0, be a small quantity, i.e. let the wave be *short" not omly
in the direction of the radius but also in the direction perpendicular
to it. Then in relation to (1.10) we assume 6, = \/_H(') and V, = M, \/-ﬂ:)

If the variations in the parameters of a stream take place in the
vicinity of the axis @ = 0, then the third equation of (1.7) will take
the form:

au A O 1 oy v .
-5;+(H‘—°)'58'+?“0‘17+H+'gy:-0 (1.14)

If the region of sharp variations of the flow parameters is situated
near the finite angle 0 = 0‘, then the last equation is simplified:

7N o 1 ov -
e T =05 +3iyte=0 (1.15)
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In a similar manner the system of equations of short waves may be ob-
tained in the case of plane flows also, For the plane waves in cylindrical
coordinate system, we have

o ou 1 v 1

wt =gty oyt ge=0

o, (1.16)
o ok A P
FI 0, M = nP,

If the wave length is of an order of magnitude less than M, and the
derivatives of p and v with respect to 8 and Y are large, then the equa-
tions (1.15) and (1.16) are simplified still more; in the case of "very
short waves® we have

i a8 1 & d g - -

B35 g5y =0 Gy =0 (1-17)
where 8, is constant. The system of equations (1.17) is analogous to the
equations which describe sonic gas flows [4].

If the flow is self-similar, i.e. if it does not depend on r, then
for spherical waves we have

au 1 ov - o . 4o
k=3 +tgay +r=0  F— =0 (1.18)
Correspondingly, for plane waves we obtain
o O 1 av i av v
=35y +gav Tzr=0 Gy =0 (1.19)

The systems of equations (1.18) and (1.19) will be of the hyperbolic
type for 8 > u and of the elliptical type in the reverse case. The equa-
tion of the "sonic line* will be, correspondingly, & = p.

2. Some particular solutions of self-similar equations. 1.
Let us construct particular solutions of the systems of equations (1.18)
and (1.19) for which v = 0 for Y = 0. Let us transform these equations
be forehand, assuming u and Y to be independent variables, and & and v to
be the desired functions. The system of equations (1.18) will then take
the form:

o, 08 9 Afdv a8 | v\ s .
=0 eRtgly iG] re—e=0 @D

The transformed equations (1.19) are analogous to the equations (2.1).

Let us look for particular solutions of the system (2.1) of the form

vmeWY, b= —lg @Y 4F@ (2.2)

To determine the functions ¢ and F we have the system of equations
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’

¢ e e — o' =0, (Wt o) —Ftu=0  (23)

For plane waves the analogous system has the form:

¢y R = ug =0, T P —FLp =0 (24

The general solution of the system (2.3) will be
L A — By
T A+u

_ 2.5
F=p— g o+ AP — B S0 04 Cl(u + 4 — B2 %2

where A, B and C are arbitrary constants.

The solution of the system of equations (2.4) for the plane waves may
be represented in the form

o= 1 tan (Cp— Ay —pu, F-:Bsin?(Ad +Cu)+ 221)7 sin2(C'p 4+ A') +

= 7
(2.6)
where A, B and C’ are arbitrary constants. Assuming
¢’ =ic, A':—iac—{——;—w, =—{144k/c
let us present equations (2.6) in the form
1 —2c(a—w)
9=— —cothc(e—p)—p, F=p— 2T %11 4 cosh2(a—p)l
2.7)
Assuming C° = ic, A” = — iac and B = (1 + k)/c, we will write equa-
tions (2.6) in the form
{ o ezc(a- )

k
— 5 [cosh 2c(a—p)—1]
2.8)
2, Taking u and v to be independent variables, and the functions &

and Y to be unknown variables, from the system of equations (1.17) we
obtain

1 >
:p'——:—-?tanhc(a—p.)——p,lf::p.—}— 3

sy Y 1 6% aY 98

This system has a particular solution, analogous to the one obtained
for equations (1.19) above:

8By =[P (Bo—a) (a—w)? + 5 (@a—pPl, ¥ = —c(a—p)v (2.10)

Another particular solution, which does not have a singularity on the
line p = 8, is given by the formula [4 ]
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1 1 1 1
3—50=—2;(3——50)—%—§}2, Y:—-ig(s—so)},—{-j—igys (2.‘11}

where a, ¢, and € are constants.

3. Boundary conditions at the front of a shock wave. 1. let
the shock wave have an excess pressure p at its front and be propagated
in a medium with an initial excess pressure Py and with a particle velo-
city g, perpendicular to the front. Then the velocity of propagation of
the shock wave front N and the velocity of the particles behind the front
will be [3]

;N=QQ<1+n+ ﬂ-“3}7.1

ir _ . P—p
4 });I—l + A ﬁoﬁ) + T1s q =10 Pon + a1

If the normal to the shock wave front and, consequently, also the
particle velocity vector make a small angle with the direction of the
radius vector, then the projection of the particle velocity on both those
directions may be considered to be equal to g. Therefore, if 9y = “0p1/P0"'
using notations of (1.5) we have

M=Fy N= ao[i ARG M) (3.1)

2. Let the solution of the short wave equations be given by the func-

tions
b8, ¥, %),  v=v(w 1.9 (3.2)

Within the approximation considered here the projection of the particle
velocity at the shock wave front and within the stream upon the radius
vector (or number M) is related by the same equation (1.11) or (3.1).
Therefore, as the solution (3.2) is known, it is easy to construct a
differential equation which determines the location of the shock wave
front, which bounds the zone of disturbed motion.

Let ¥ be the angle between the normal to the shock wave front and the
direction of the radius vector. We have
ﬁ_lar__dA__'/n-{-i_A_{PdS 3.3
b=rwm=w =V 2 %o (3-3)
For the projections of the velocity vector downstream of the front the
equalities
u=gcos$p=xgq, v=gsindp=u} (3.4)
are valid. The velocity of propagation of the front in the direction of
the radius vector is equal to

N
cos ¢

n

=a[1+2F Lor 4 ) + —‘”21] (3.5)
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On the other hand, this velocity may be determined with the help of
equations (3.2):

dr A dM | 8A .
F=a(t+a+ 5+ ) (3.6)
Thus, the equation of the shock wave front will be
A dM , A  n41 2
At gigr T 5 = M+ M)+ (3.7)

If the solution (3.2) does not depend on r, then from formula (3.7)
follows

A dM 1 2 .
A—’rgﬁ'ﬁzni (M+M1)+%‘ (3.8)

If the pressure at the wave front does not depend on time either, then
the differential equation of the shock front is simplified still more and
is written in the form:

A= E+D)M+ M)+ 3§ (3.9)
When 6 is a small quantity, we assume in accordance with (1.10)
O, =V M, , Vo= MV My

Equation (3.9), taking into consideration (3.3), may then be written
in the form

b= L (u o+ wm)+ +(ds/ Yy (3.10)

When changing to the Cartesian coordinate system, we have

T = aet {1 +—;- (n4+1My X]=-rcosd=a (1 4 A ~—-~_]:~{}'3) (3.11)

Y == agl ‘/ n——;—{ MY = rsin® = qytd

Consequently,
6:X+~;~)"—' (3.12)

The differential equation of the shock wave front in the Cartesian
coordinate system i1s given by

dX jdY == —[Y + V28 — (o + w))] (3.13)
3. Let us now take into consideration the condition of continuity of
the projection of the velocity vector parallel to the front during transi-
tion through the shock wave. Let the medium before the wave front be at
rest. Then the component of the velocity vector parallel to the front is
equal to zero, and the values M and V, given by equations (3.2) at the
front of the shock wave, must satisfy the relationship

M4V =0 (3.14)



834 0.8. Ryzhov and S.A. Khristianovich
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Fig. 1.

In pursuing our investigation we shall first try to satisfy condi-
tion (3.14) and an analogous condition at the front of the shock wave
propagated through a medium already disturbed,and then check the degree
to which that condition has been fulfilled. A certain integral relation-
ship may be satisfied approximately instead of satisfying approximately
the condition of continuity of the tangential component of the velocity
vector.

Let us write in the form of an integral the law of conservation of the
component of the momentum of the fluid in the direction perpendicular to
the wall, for the region including the front of a shock wave.

Let us consider, for example, the flow that occurs in the case of the
so-called irregular reflection of a shock wave from a rough wall (Fig.1).
The curve 0A represents a Mach wave, A K the front of an oncoming wave,
AB the front of a reflected wave and BD the line of equal pressure p.
Let us consider the mass of the fluid occurring in the region O°A’B’BD
at time t. At this time let the front of the Mach wave occupy the posi-
tion OA and the front of the reflected wave occupy the position A B. At
time t + dt these fronts will move to positions 0'A” and A’B”. The
particles, lying on the line BD, will take the position B”D"”.

Let u, denote the velocity of the particles behind the front of an on-
coming wave, and p, the excess pressure, The component of the velocity
vector perpendicular to the wall will be u,a, where a is the angle bet-
ween the plane of the oncoming wave and the perpendicular to the wall.
Upstream of the fronts OA and AK, u = 0, Let »w denote the component of
the velocity vector perpendicular to the wall. The variation of the
momentum of the mass of fluid under consideration in time dt is equal up
to quantities small compared to M, to the expression

{ulal (0 —%) 4 DSB wdd } a2 ol di

where ¥ is the angle 8, corresponding to the *triple" point A. Indeed,
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the difference between the momentum in the regions O’A’B’D” and OABD
will be less than » axe Aagpatdt, while the momentum in the region
BB*D”D will be less than u _ Bua’p tdt. If we denote the angle between
the shock wave front and the wall by y, and dI an element of the curve,
then the force impulse of the pressure may be written in the form

dt S (p — p1) cosydl = [S(u——u,) dA—unp, OA — (u — uy) nprD] P, ntdt

BDOA DO

Equating the force impulse to the variation of the momentum, we have

wyo (9 — Xy 4 S wd@ = S ( —u)dA — unp,04 — (& — u;) np.BD (3.15)

DB DO

Introducing the notations

o X o o w

Y == —e—ee ey W = ——— 316
V i+ 1) M, Vig(n+ 1) M, asMy Vi, (n + 1) M, ( )

we obtain
paa (V= 10) + | Wa¥ = § (o — ) &8 — oy (X4 — Xo) — (— 1) (X5 — X p)

DB Do (3.17)

4. Approximate solution of the problem of a regular reflect-
ion of a plane wave from a rough wall at near critical angles
of incidence. Let a weak infinitely long plane shock wave, with excess
pressure p, and with a front that is perpendicular to the wall RE
(Fig. 2), be incident on the wall RO the normal of which makes a small
angle a with the shock front.

740

£ £
Fig. 2.

The front of the reflected wave OBCE consists, in general, of the
interval of the line OB along which the excess pressure is constant,
the small arc BC along which a rapid decrease of pressure takes place,and
the boundary arc CE which is the front of the wave and along which the
pressure hardly differs from the pressure of the incident wave.

In the region ABCD there will be a sharp variation of pressure in
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the radial direction and also in the direction 6. In this region we can
take the flow to correspond to the short wave.

2. Let B be the angle of inclination of the front of the reflected
wave to the perpendicular of the wall R(Q. The pressure in this region
(or the number Mo) as well as the angle B are determined from the condi-
tion of the equality of the velocity of propagation of incident and re-
flected waves along the wall:

Ne N
cosB ~ cosa

(4.1)

and from the equation of the conservation of momentum perpendicular to
the wall. Using (3.17) we obtain

Mo=M;(1 +2/p) (4.2)

From equation (4.1), considering the equality (3.1), we have
B =L (n+ 1) M,
Hence

ETo e S AEL T m
oV ey b=V P MeTER 6D

As g, decreases the angle a decreases and reaches a minimem value for
By = 1/3. This value of & is the critical angle of incidence.

Thus, denoting critical values with asterisks, we have
n¥1 2 3 /nF1 1
«=2)"3 M=y Vi M, = (4.4)

Consequently, a maximum increase of the excess pressure behind the
front of the reflected wave is reached for the regular reflection at the
critical angle, and it is equal to three.

To every value of a in equations (4.3) correspond two different values
of S{}fﬁfi. In reality, as is well known, a flow establishes itself which
corresponds to the value

P VEE) o) @9

Formula (4.5) is valid, of course, only for small angles a close to
the critical.

The point B in Fig. 2 is the point of intersection of the front of the
reflected wave with the sound wave. The equation of the sound wave front
and the equation of the reflected wave will be correspondingly

41 1
A="EIM, Ay ep— 1 =200 L (4.6)

4
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Hence
n+1 \
= M, —Vi= ) 4.7
SB V [ \Vl — 2“ V B ( }
The angle of incidence a,, at which a sound wave catches up with the
front of the incident wave, corresponds to 0 = 0; beginning with this

value of @ the region of constant pressure vanlshes. From (4.7) we find

the corresponding values of py. We have 8
(4.8)

1 34V5s R VAESYT V541 "n+1ﬂ
W= g~ 2.65, as—V Vz(Vs )Nz.osy 5— M,

3. Let us consider the case a > a_. To determine the flow in region
ABCD we will make use of the particular solution (2.8). At the front
of the sound wave BA v = uf + ¥ = 0, consequently a = 1.

Along the wall RO for Y = 0 we have

‘fii 1 + e2e=1) 4 ksinh 2¢ (1 — p)
ZT‘f = — 2¢ [€2°0~) 4 K cosh2¢c (1 — p)]

and dX/dy > 0 and d?X/dp? < 0. These conditions are fulfilled for ¢ > 0
and k> - 1.

Constants ¢ and k are chosen in such a manner that for g - "y the
front of the reflected wave will become the sonic boundary line & = pu_,
so as to satisfy the equation of conservation of momentum (3.17) in the
best manner.

The equation of the conservation of momentum perpendicular to the wall
in the region which is bounded by the front of the reflected wave, by the
line p = const and by the wall RO, in the case under consideration, gives

wo?Y — - tanh ¢ (1 —p) o = (. — ) (X4 — X5) +
+ (1 — ) (Xo—Xp) + + (1 —w) (1 +p— 2p) —
(B (1 — ) — (o — ) [0 - cosh 2 (1— ) —
— s [ — 01 — Esinh 2¢ (1 — )]
where Y is the ordinate of the point of the reflected wave front. This
equation is satisfied by all the points of the reflected shock front up

to the line p = 0.6 with an error not greater than 5 per cent, if it is
compared with the quantity alaoY. Near p = p, the error reaches 20 per cent.
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Here g, = 0.4, @ =1.325 c=2 and k=~ 1.

In Fig. 3 is shown the velocity field computed in this manner, or more
precisely, the constant g lines, which coincide with the lines of equal
pressures, and the front of the reflected wave, are presented.

When the line g = p; is approached the pressure gradients decrease,
therefore, the flow in this region is not described by the equations of
the short waves.

The velocity field near the line g = g, is subjected to considerable
influence by the flow in the whole region of disturbed motion, which is
determined by the acoustic wave equations. For g < 0.5+ 0.6 the obtained
solution molst likely does not furnish a sufficiently correct picture of
the flow.

In the region near the line g = 1 the velocity field is near § = p,
i.e. the pressure along the wall near the point A decreases linearly with
distance.

4. Whena, < a < a_, the front of the reflected wave does not have any
straight line interval. The velocity field behind the front of the reflect-
ed wave can be determined approximately by the ise of the particular
solution (2.7) of the equations {2.2). The calculations show that the
equation of conservation of momentum is best satisfied when @ » =, In
this case the solution (2.7} may be represented in the form

Xmp—ge—hemtmw), ooy va 2 4

where h and ¢ are constants. Let M, be the Mach number in the point O

(Fig. 2) behind the front of the reflected wave. At this point the velo-
cities of propagation of the incident and reflected waves must be equal,
therefore '

1 2y g - 2k (4.10)

The constant h is chosen by virtue of the condition that for g » g,
the front of the reflected wave coincides with the sound boundary & = g,.

Figure 4 gives a picture of the reflection for the case when the angle
of incidence is equal to the critical angle. Also g, = 1/3, a°® = 2A4/T,
h=0.65 ¢= 3.2,

The error which results when equation (3.17) is satisfied, does not
exceed 20 per cent even for the values g near p,.

5. Irregular reflection. When the angle a < a_ an irregular reflection
takes place, the configuration of which is shown in Fig. 1. In addition
to the incident and reflected shock waves there appears a third shock
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wave, a Mach wave.

43 -1 -éf [ 03 7T I a5
Fig. 3. Fig. 4.

Incident and reflected waves now do not intersect at the wall, but in
the *"triple" point A which moves along the line € = y; the Mach wave
connects the point A with the wall.

Let us write the conditions which determine the equation of the velo-
city of propagation of the shock waves at the point A along the line
0 = x and of the propagation of the front of the Mach wave along the wall.
Using equations (3.1) we obtain (5.1)

ba
V Tp(n +1)M,

where M, is the number M at the origin of the Mach wave, i, is the angle
between the normal to the Mach wave at the point A and the ray 6 = y.

(€ + X = (37— ) s (0 LN a% = gy — iy, a° =

When comparing the velocity of propagation of the Mach wave along the
wall and the velocity of motion of the point A parallel to the wall, we
obtain

2 = 1 — g 2 (X4 — Xo) (5.2)
Hence a°? = 1 — p, for x » 0, therefore
My/M,=1+4a"2 (5.3)

When the angle of incidence is equal to the critical angle, a” = 2,
and, consequently, for this value of the angle the excess pressure at the
origin of the Mach wave exceeds five times the excess pressure in the
incident wave. If the angle a is near zero, then the equation of the re-
flected wave will differ little from the equation of the sound periphery:

X+—;—I/2 = Ay (54)

The equation of the front of the incident wave may be presented in
the form
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X —o =2 p; o (5.9)

Hence, for the angle, which determines the position of the triple
peint, we obtain the relation

L=Vn+1)M, —a or X =1—a" (5.6)
Thus, if the reflected wave were near the sound wave, the angle y
would become zero for an angle of incidence equal to half the critical
angle. Actually, angle x becomes zero, when the angle of incidence is
equal to the critical angle, and it is of very small magnitude roughly
in the interval 0.5a, < a < a_. In this range a sharp variation of
pressure takes place 1n an extremely small region near the Mach wave.

To describe the picture of flow in this region we may, therefore, make
use of the equations, (2.9). The position of the origin of the Mach wave
is given by the equation X = 0.5, i.e. the value 8, in equations (2.9)
should be taken to be equal to 0.5. We will assume

Ne=dpe(i—t), Y=o (5.7)

where ¢ is a small quantity, and .fo is a constant equal to the value &
for p = 1. With the accuracy up to the order of magnitude ¢2 we have
8 = X. Using the above notation the solution (2.11) assumes the form:

5,§0=2p.-—1+%‘f12, v::———(l“‘“;‘)"l_%n:‘ (©-8)

When solving the last of these equations for 7, we have
=70, 1) (5.9)
Upon adding the particular solutions (2.10) and (2.11) and assuming
c? - e¢h, we obtain
n = () — @)y, S =2 — 1+ R [(k—a) (@~ 4 L (a—pp]
(5.10)
Computing the curvature of the lines g = const for 7 = 0 for the velo-
city field which is given by the equations (5.10), we obtain

gy h+ 4 (2p —1)72
(%i/!n:o— Wla—u+2/hQe— 1N (511

Since the equation of conservation of momentum (3.17) is to be satis-
fied along the Mach wave in the best possible manner, it follows that
the curvature of the curve p = 1 for n = 0 should be taken as inifinite.
Also a = 1 - 2/h.

From formula (5.11) we then obtain
{d2E N N 1 44 2u—1)2h
\anz fnmo  (T=0R T4+ e — 1) A

(5.12)
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Solution (5.10) will now be of the form:
m=[2—1—whlv+1, @ v)
i—fo=— (=Wt 5 — D]+ b o 1
Also (5.14)
(O/Op)mo = (1— )[4+ R (2u— 1)),  (0%/0p2)vmo=—4[1 +h(x—2)

If along the wall the quantity d £ /9 is to increase when pu decreases
the inequality h < 4 must be satisfied. The variation of the quantity h
influences only insignificantly the distribution of the pressure along
the wall, but it changes noticeably the curvature of the lines g = const
for values of g near unity. If further the absolute magnitude of v is to
increase along the lines g = const, as 7 increases the value of h should
be greater than two. Figure 5 shows the velocity field for h = 2 2/3,
for which the equation of conservation of momentum in the region adjacent
to the Mach wave is satisfied with maximum accuracy. The equations which
determine the position of the Mach wave and the equations of the reflected
wave in the case under consideration have the following form, respectively:

1

Fig. 5.

dE — d N
m=V1i—w, d—,§=V1—y~—m

When the value of the angle a is very near, but less than, the critical
value, the velocity field behind the front of the reflected wave will be
very near the velocity field for the angles of incidence, which are just
a little greater than the critical angle, with the exception of a very
small region near the point of intersection of the front of the incident
wave and the wall, The size of this region approaches zero for a - a,.

In this small region which includes the Mach wave the velocity field will
coincide approximately with the velocity field represented in Fig. 5. In
the construction of the velocity field behind the reflected wave we will
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again make use of the solution (2.7). We assume that a = m, where m is
equal to the value g for which the variation of the pressure near the
point O begins to be sharp. Because the size of the region of the sharp
pressure variation may be considered to be insignificantly small, we can
equate the velocities of propagation of the front of the reflected and
incident waves along the wall and obtain:

p 214 H)

2m—1

The magnitude k is chosen in such a way that the front of the reflected
wave for p » p, will tend toward the sound periphery 8 = u,. Along the
front of the reflected wave the equation of conservation of momentum
(3.17) must be satisfied. Calculations show that in order to satisfy this
condition for p, = 0.25 the quantity c must be of the order of 5. Figure
6 shows the construction of the velocity field for ¢ = 5.25, k = 0.05,
corresponding to the value m = 0.7, In this case the equation of conserva-
tion of momentum is satisfied with an accuracy of 10 per cent relative to
the term plaoY. For p. = 0.3 the error increases when using the same
values of ¢ and k. For g, = 0.2, the number m may be taken to be equal to
0.65. The velocity field, given in Fig. 6, by approximation may be con-
sidered to correspond to the velocity field behind the front of the re-
flected wave in the interval 0.2 < p € 0.3 which corresponds to the inter-

val of angle a variation frome, = 2V 1/2(n + 1)¥, toa = 1.41V1/2(n+

D H,.

\\ g
AV

N

asr

Fig. 6. Fig., 7.

The approximate solution given above does not permit us to determine the
dimensions of the region of the strong pressure variation, i.e. the value
¢ nor the exact boundary which separates the region of the very sharp
pressure variations near the Mach wave. For this, it is necessary to de-
rive the solution of the system of equations {1.19), which will include
the special feature that describes the pressure field near the Mach wave.
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If the dependence y = ¥ (a) is determined on the basis of optical measure-
ments, then the magnitude ¢ is determined from the equations

_ —y/n¥1,, R ol
X—O-SEVMV 5 M, m —1+1m

/

Figure 7 shows the curves 1, 2, and 3 of the pressure distribution for
the angles of incidence a = 1.73 / 1/2(n + 1) M,, the eritical angle a, =
2y 1/2(n+ DM, and for the angle a = 2.095 Q 1/2(n + lle.The plotted
lines show that the regions of increased pressure near the critical angle
are of very small extent and therefore, for their experimental observation

in experiments with explosions of small charges, instruments of very high
resolving power are necessary.
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